Правило Крамера
Если в системе n линейных уравнений с n неизвестными , то система имеет решение и притом единственное. Это решение задается формулами

Доказательство. Обратная матрица находится по формуле

где -- алгебраические дополнения. Тогда следует, что

Заметим, что разложение определителя по первому столбцу в точности совпадает с первым элементом матрицы-столбца в правой части последнего равенства, разложение определителя по второму столбцу дает второй элемент матрицы-столбца и т.д. Поэтому , откуда и следует утверждение теоремы.