O Método de Cramer


Regra de Cramer é uma formula explícita para a solução de um sistema de equações lineares com tantas equações incógnitas, válido sempre que o sistema tenha uma única solução. Ele exprime a solução em termos dos factores determinantes do (quadrado)
matriz de coeficientes são obtidos a partir de matrizes que ao substituir uma coluna pelo vector do lado direito das equações.
Caso Geral:
 x_i = \frac{\det(A_i)}{\det(A)} \qquad i = 1, \ldots, n \,

Para um sistema com 2 equações:

Se  ad-bc\ne0, o sistema

\left\{\begin{matrix}
ax+by = e\\
cx+dy = f\end{matrix}\right.

Tem uma única solução :

x = { \begin{vmatrix}e&b\\f&d\end{vmatrix} \over \begin{vmatrix}a&b\\c&d\end{vmatrix} } = { ed - bf \over ad - bc},\quad y = { \begin{vmatrix}a&e\\c&f\end{vmatrix} \over \begin{vmatrix}a&b\\c&d\end{vmatrix} } =  { af - ec \over ad - bc}.



Para um sistema com 3 equações:

\left\{\begin{matrix}a_1x_1 + b_1x_2 + c_1x_3 = d_1\\
a_2x_1 + b_2x_2 + c_2x_3 = d_2\\
a_3x_1 + b_3x_2 + c_3x_3 = d_3\end{matrix}\right.

 

A = \begin{pmatrix}a_1&b_1&c_1\\a_2&b_2&c_2\\a_3&b_3&c_3\end{pmatrix},\quad X= \begin{pmatrix}x_1\\x_2\\x_3\end{pmatrix}\quad\text{et}\quad
\Lambda = \begin{pmatrix} 
d_1\\ 
d_2\\ 
d_3
\end{pmatrix}.

O sistema tem uma única solução se  \det(A) \ne 0 :

x_1 = \frac{\det(A_1)}{\det(A)} = \frac{\begin{vmatrix}d_1&b_1&c_1\\d_2&b_2&c_2\\d_3&b_3&c_3\end{vmatrix}}{\det(A)}

x_2 = \frac{\det(A_2)}{\det(A)} = \frac{\begin{vmatrix}a_1&d_1&c_1\\a_2&d_2&c_2\\a_3&d_3&c_3\end{vmatrix}}{\det(A)}

x_3 = \frac{\det(A_3)}{\det(A)} = \frac{\begin{vmatrix}a_1&b_1&d_1\\a_2&b_2&d_2\\a_3&b_3&d_3\end{vmatrix}}{\det(A)}

Outra maneira de apresentá-lo: 

X=\begin{pmatrix}x_1\\x_2\\x_3\end{pmatrix} = \frac1{\det(A)} \cdot \begin{pmatrix}
\det(A_1)\\
\det(A_2)\\
\det(A_3)\end{pmatrix}.

 


Lembrete sobre o determinante de uma raiz

Para 

A_{i,j}=\begin{pmatrix}a_{1,1} & \dots & a_{1,j-1}& a_{1,j+1}& \dots & a_{1,n} \\\vdots & & \vdots &  \vdots& &\vdots\\
a_{i-1,1} & \dots & a_{i-1,j-1}& a_{i-1,j+1}& \dots & a_{i-1,n} \\
a_{i+1,1} & \dots & a_{i+1,j-1}& a_{i+1,j+1}& \dots & a_{i+1,n} \\
\vdots & & \vdots & \vdots &&\vdots\\
a_{n,1} & \dots & a_{n,j-1}& a_{n,j+1}& \dots & a_{n,n}\end{pmatrix}

O determinante pode ser calculado com esta fórmula

\det(A)=\sum_{j=1}^{n} a_{i;j} (-1)^{i+j}\det(A_{i,j})