Правило Крамера
Если в системе n линейных уравнений с n неизвестными
, то система имеет решение и притом единственное. Это решение задается формулами
Доказательство. Обратная матрица находится по формуле
где
-- алгебраические дополнения. Тогда следует, что
Заметим, что разложение определителя
по первому столбцу в точности совпадает с первым элементом матрицы-столбца в правой части последнего равенства, разложение определителя
по второму столбцу дает второй элемент матрицы-столбца и т.д. Поэтому
, откуда и следует утверждение теоремы.