Наибольшим общим делителем (НОД) для двух целых чисел m и n называется наибольший из их общих делителей. Пример: для чисел 70 и 105 наибольший общий делитель равен 35.
Наибольший общий делитель существует и однозначно определён, если хотя бы одно из чисел m или n не ноль.
Возможные обозначения наибольшего общего делителя чисел m и n:
Понятие наибольшего общего делителя естественным образом обобщается на наборы из более чем двух целых чисел.

Связанные определения

Наименьшее общее кратное


Наименьшее общее кратное (НОК) двух целых чисел m и n — это наименьшее натуральное число, которое делится на m и n. Обозначается НОК(m,n) или [m,n], а в английской литературе lcm(m,n).
НОК для ненулевых чисел m, n всегда существует и связан с НОД следующим соотношением:

Это частный случай более общей теоремы:
Если — ненулевые числа, тогда